Six strategies for defeating the Runge Phenomenon in Gaussian radial basis functions on a finite interval
نویسندگان
چکیده
منابع مشابه
Exponentially-Convergent Strategies for Defeating the Runge Phenomenon for the Approximation of Non-Periodic Functions, Part I: Single-Interval Schemes
Approximating a function from its values f (xi) at a set of evenly spaced points xi through (N+1)-point polynomial interpolation often fails because of divergence near the endpoints, the “Runge Phenomenon”. Here we briefly describe seven strategies, each employing a single polynomial over the entire interval, to wholly or partially defeat the Runge Phenomenon such that the error decreases expon...
متن کاملThe Gibbs Phenomenon for Radial Basis Functions
What is now known as the Gibbs phenomenon was first observed in the context of truncated Fourier expansions, but other versions of it arise also in situations such as truncated integral transforms and for different interpolation methods. Radial basis functions (RBF) is a modern interpolation technique which includes both splines and trigonometric interpolations as special cases in 1-D, and it g...
متن کاملGaussian Radial Basis Functions for Simulation Metamodeling
This paper presents a novel approach for developing simulation metamodels using Gaussian radial basis functions. This approach is based on some recently developed mathematical results for radial basis functions. It is systematic, explicitly controls the underfitting and overfitting tradeoff, and uses a fast computational algorithm that requires minimal human involvement. This approach is illust...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملStable Computations with Gaussian Radial Basis Functions
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2010
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2010.10.015